香港AI四巨頭 IBM論壇上分享實戰經驗
人工智能 (AI),尤其是生成式AI,是全球熱門話題。早前舉行的《IBM香港科技論壇》主題為「您的數據是否已經為AI做好準備?」,來自金融科技公司Alpha Square、恒生銀行、數據素養協會和香港樹仁大學的專家深入探討數據就緒的重要性、如何識別適用於AI的數據,以及培養AI時代「數據為先」的文化。
AI基本功:增加數據準備工作
Alpha Square科技的創始人兼首席執行官Arthur Wong擁有30多年利用新興數碼技術和解決方案推動IT轉型的豐富經驗。他強調,成功實施人工智能的三個關鍵要素:底層基礎架構、人工智能模型或算法,以及數據就緒。
然而,資源通常被用於基礎架構設施和AI模型,數據就緒的工作經常被忽視。做好數據準備極具挑戰性但又至關重要,它與特定行業的需求和內部流程密切相關,是令企業脫穎而出的關鍵。Authur分享了他在銀行業的經驗,他專注於元數據管理和利潤分配這類複雜任務的解決方案,這些任務需要耗費大量時間和精力。雖然更多的數據可以提高AI的準確性,但確保數據質量同樣重要。他建議企業增加數據準備工作的資源和人力投入,有效應對與數據相關的重要挑戰。
談到企業在數據管理方面所面臨的挑戰,他強調要將分散的數據源整合到集中式存儲庫中;要管理好元數據和血緣等數據元素,從而可以實現有效的決策和AI建模,亦要改進數據在關鍵決策中的系統化使用。
此外,他還分享了Alpha Square科技公司在開發基於WhatsApp和微信的信息平台時處理非結構化數據的經驗。由於客戶互動語言的多樣性、音頻內容和表情符號等因素,從非結構化數據中提取有價值的見解非常複雜。他認為,要解決這些問題,自然語言處理 (NLP)、音頻識別和圖像識別等先進的AI模型對於構建高效的AI應用至關重要。
數據就緒的關鍵控制指標
恒生銀行數據與分析辦公室主管Edwin Hui對追求絕對數據準確性而不是速度提出了質疑,他說如果將準確率的要求略微降低到90%,可以加快流程,尤其是在效率至上的營銷活動場景中。
這同時引發大家對投資回報率 (ROI) 的討論,尤其是關乎銀行業等受到嚴格監管的行業場景,各種關鍵控制指標 (KCI) 要如何從不同角度有效衡量企業實施AI的數據就緒性。Edwin詳細闡述了不同層面KCI的複雜性,包括對整体互連的上游和下游系統的數據就緒性和可用性的評估。他反思如何在考慮時間和資源限制的同時又能嚴格保證數據的準確性,提出是否有必要追求絕對完美,或者應該從投資回報率的角度尋找一個平衡的方法。
Edwin承認,向業務領導證明數據治理支出的合理性是一個難題,尤其是從投資回報率的角度來看更是如此。他強調保持長期視角和持續努力開展數據治理、控制和準備工作的重要性,強調這些工作對於促進組織成功实施AI至關重要,對於業務利益相關者來說,這也是他們資助這些計劃並從中受益的關鍵。
以恒生銀行正在實施的關鍵措施為例,Edwin認為採取整體的數據管理方法對企業具有實際價值。他強調,要建立有效管理數據的控制措施,實施提升企業數據素養的計劃,加強企業整體對於數據潛在價值的認識,培養分析能力並以數據洞察推動決策。這些要素相互配合,有利於形成一個集管理、文化和分析於一體的整體戰略。
數據素養:AI項目獲取ROI的關鍵
Toa Charm博士是數據素養協會的創始主席,曾在Cyberport、HSBC、IBM和Oracle擔任高管,經驗豐富。他強調數據素養對於數據和 AI 計劃的投資回報率 (ROI) 至關重要。他說,組織的數據素養對於最大限度地提高其數據和AI項目的ROI至關重要,這關乎評估組織內部「數據為先」的文化和員工的數據思維方式,只靠擁有大量數據並不能保證組織獲得最佳的投資回報。
在談到元數據管理的挑戰時,Toa Charm博士強調跨部門明確數據定義很有必要,可以促進協作、解決複雜問題。目標是通過在全公司普及數據知識,使員工能夠利用數據解決問題和創造價值,使組織能夠從數據資產中獲利。
他同時強調,評估用於數據湖的數據,对于有效應對業務挑戰並達到用例所期效果非常重要。他指出,需要對數據的清理、準備和管治等任務進行優先排序,將重點放在能為公司带来價值的行動上。
要從數據資產中獲利,一個閉環的反饋系統也很重要。Toa Charm博士指出,數據和AI計劃的實施需要多個部門協作努力,不單是靠IT和數據專家。要想取得成功,企業必須培養數據驅動的文化和思維方式,培養所有員工的數據素養,使他們對於使用企業數據的目標、語言和理解保持一致,從而實現高效協作與共贏。
數據就緒性在學界的現狀
香港樹仁大學應用數據科學系副教授兼系主任Connie Yuen博士分享了AI的數據準備工作在教育和研究領域的現狀。她借鑒一個與非政府組織合作開發早期閱讀障礙識別智能系統的項目,探討了他們在數據收集方面遇到的挑戰。這些挑戰源於早期教育中心沒有保留原始數據,因此需要花費大量精力和時間來收集必要的數據。
她引用現實案例,介紹了香港的大學通過採用行業合作夥伴的建議來定制提升學生數據素養的學分與非學分課程。她認為實踐對於學生大有助益,如通過暑期實習參與行業項目,以此來加深他們對於數據的AI就緒性和數據素養的理解。Connie Yuen博士預計未來幾年學生會進一步掌握和理解這些概念。